ACR Technology Base RCS Thermalhydraulics

By Dave Richards, Manager, Containment and Thermalhydraulics Analysis Branch

Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 26, 2002

Outline ACR Technology Base RCS Thermalhydraulics

- Distinguishing Features of CANDU
- Experimental Programs
- CATHENA Thermalhydraulic Code
- Validation Methodology and Selected Results

ACR Reactor Coolant System Layout

Showing piping above and below headers

-All large reactor coolant piping above headers

CANDU System

- Below "Header", Unique Features:
 - Horizontal Fuel Channels, Pressure Tube, Calandria Tube
 - 43-Element Fuel Bundle
 - Individual Fuel Channels supplied by Feeder Pipes from a Header
 - End Fittings allow on-power refueling
 - Moderator Heat Sink
- Above "Header", Common Features (with other reactors):
 - Vertical U-Tube Steam Generators
 - Centrifugal Pumps

Experimental Data Base

- CANDU System Makes Use of International Data Sets:
 - Edwards Pipe Blowdown (Break Discharge)
 - Marviken Blowdown Tests (Break Discharge)
 - Dartmouth Air/Water Flooding in Straight Pipe (Counter Current Flow)
 - GE Large Vessel Blowdown Tests (Level Swell)
 - Christensen Power Void Tests (Coolant Voiding)
 - and others

Experimental Data Base – CANDU Specific

- Can by subdivided into:
 - Small Scale Experiments
 - Component Experiments
 - Integral Experiments
 - CANDU Plant Transients

- Small Scale Experiments, Examples:
 - Flooding downstream of an elbow (relevant to feeder)
 - Pressure Tube / Calandria
 Tube Heat Transfer
 Experiments
 - Horizontal Tube Rewetting / Refilling Experiments
 - Pressure Tube
 Circumferential
 Temperature Distribution

Experimental Data Base – CANDU Specific

- Full-Scale Component Experiments:
 - Feeder Refilling, Cold Water Injection Test Facility
 - Channel Stratification Studies, Cold Water Injection Test Facility
 - Header Studies, Large Scale Header Facility
 - Header Studies, Header Visualization Facility
 - Pump Characterization, CANDU Pump Facility
 - End Fitting Studies, End Fitting Characterization Facility

Cold Water Injection Facility (CWIT)

- Full-scale heated fuel channel with simulated fuel string
- CANDU representative feeders and End Fittings
- Designed to investigate feeder/channel refill performance, as well as flow stratification within CANDU bundle

Experimental Data Base – CANDU Specific

- History of AECL Integral Test Facilities
 - RD-4 (1974) small scale
 - RD-12 (1976 to 83) half scale
 - RD-14 (1985 to 87) full
 elevation, one channel per pass
 - RD-14M (1988 to present) full elevation, five channels per pass
 - RD-14M (2002 to present) re-configured to simulate ACR conditions (higher temperature / pressure)

- Integral Experiments:
 - LOCA,
 - Small, Large, Critical
 - With and Without Emergency Core Cooling (ECC)
 - Natural Circulation
 - Single- and Two-Phase
 - Loop Stability
 - Shutdown Cooling Experiments

RD-14M

Full elevation, scaled CANDU loop for safety thermalhydraulic code validation

Thermal Hydraulics of RD-14M Heat Transport System

- Full elevation changes between major components and full linear dimensions.
- Reactor typical heat- and mass-transfer rates
- Ten full length electrically heated channels.
- Simulation of all primary-side components channels, end-fittings, feeders, headers, and steam generators.
- Full pressure and temperature conditions (current CANDUs and ACR).
- Extensively instrumented.
- Dedicated data-acquisition system.

RD-14M Heated Sections - Fuel Element Simulators

STAINLESS STEEL FLOW TUBE 44.8 mm I.D. X 57.2 mm O.D.

Measuring Void in a RD-14M Channel

- Complex because ratio of metal to fluid volume in the RD-14M channel (1.5) limits the sensitivity to changes in void fraction
- Also, high sampling speed (10 Hz) and uncertainty requirements (10%) required for fast transients
- Neutron Scatterometer was recently developed:
 - Neutron source, 100 μ g ²⁵²Cf (54 mCi)
 - Optimized counting system for detecting scattered (thermal) neutrons
 - Meets set sampling and accuracy targets

Side View - Source Deployed

TS14 Void Fractions Test B0101

CATHENA

- Code Evolution at AECL
 - RAMA EVET (~1977)
 - RAMA EVUT (~1983)
 - RAMA UVUT (~1984)
 - CATHENA (~1986)

- <u>Canadian Algorithm for</u> <u>THE</u>rmalhydraulic <u>N</u>etwork <u>A</u>nalysis
- One-dimensional, two-fluid system thermalhydraulics code
- Developed by AECL primarily for analysis of postulated LOCA events in CANDU reactors

CATHENA THERMALHYDRAULIC MODEL

- Non-equilibrium model
 - 2-velocities,
 - 2-temperatures
 - 2-pressures
 - plus noncondensables
- Flow regime dependent constitutive relations couple two-phase model
- CATHENA "interfaces" to other codes:
 - Fuel Behavior: CATHENA / ELOCA
 - Plant Control: CATHENA / LEPCON
 - Physics: CATHENA / RFSP

CATHENA's Solid Heat Transfer Model

- Multiple surfaces per thermalhydraulic node
- Radial and circumferential conduction modeled
- Models heat transfer within bundles subjected to stratified flow
- Radiation heat transfer calculated
- Built-in temperature dependent
 material property tables
- Models deformed geometry and pressure/ calandria tube contact

CATHENA VALIDATION

- Described later in a separate generic presentation
- Brief Summary:
 - Validation has proceeded on a phenomenon-by-phenomenon basis
 - Standardized and documented models of facilities used where they exist
 - Default code settings used throughout unless otherwise specified and justified
 - Data selected in validation process includes numerical tests, separate effects, component and integral tests, as well as transients in CANDU plants
 - Sensitivity analysis conducted to identify impact on simulations of experimental errors used as boundary conditions (e.g., power) and nodalization
 - Uncertainty analysis conducted to identify impact on code results (e.g., uncertainty in heat transfer correlations)

CATHENA Validation, Example of Prediction of Channel Void During LOCA

CATHENA Validation, CANDU 6 Plant Transient, Single-Pump Trip

- CATHENA CANDU-6 (Pt. Lepreau) integrated model includes 28 channels in 4 passes, 4 steam generators, emergency coolant injection system, inventory control system, and reactor regulation system (3775 nodes)
- Sequence of events
 - primary pump 4 switched off at t=0 s
 - pump trip initiates a reactor step back to 60% of full power (step back endpoint)
 - reactor trips at approx 13 s on Shutdown System 1 (SDS1) low pressure signal from Reactor Outlet Header 5

Thermal Power Transients

Pump Run-down Speed

Outlet Header 5 Pressure

Pg 25

Summary

- System Thermalhydraulic Technology Base consists of:
 - Experimental Programs (International & CANDU Specific)
 - CATHENA Thermalhydraulic Code
 - Validation Results
- CATHENA has been validated, in a formal process, for safety and licensing analysis of CANDU Reactors
- This validation is in the process of being extended to ACR conditions

